
1 Introduction

1.1 Why study probability and statistics?

• At the root of most scientific studies is the need to understand/measure

some characteristics of a population of objects or of people. Measurements

in a population usually exhibit some variation, large or small. In this

course, we will see how we can take into account this variation in order to

make intelligent decisions about the population.

• The population of interest is usually large and cannot be exhaustively

studied. Instead, it is sampled in some intelligent/representative way. All

calculations are made on the sample. We calculate the mean, the variance

etc on the sample.

• From the sample, we wish to draw inference on the population. The

meaningful and mathematically justifiable transition from the sample to

the population is provided by the study of probability and statistics.
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Example1 Coin tossing. A coin has two sides, head or tail. It is characterized

by the likelihood of getting heads (or equivalently of getting tails). If we

know it is perfectly balanced, then we may assume that the likelihood of

getting heads is 50%. BUT we often do not have information about the

coin. AND so we need to collect it. We do that by tossing the coin a few

times in a fair way and by keeping track of how many heads come up. The

results of the tosses is what constitute a sample. If we observe 100 heads

in 100 tosses, can we then say with confidence that the coin is biased in

favor of heads? What if we observe 65 heads? 50 heads? How does our

level of confidence change each time?
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Example2 Measuring the health of a population. We believe that the average

weight of the population in the USA has increased since the last decade.

We do not have the resources to weigh everyone. And so we take a repre-

sentative “small” sample and weigh everyone in the sample. Suppose that

a decade ago, the average weight for a sample of men was 130 pounds

whereas today for a different sample it is 145 pounds. There is an ob-

served difference of 15 pounds in the average. Can we then assert that the

population average weight is on the rise?
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Example3 We would like to measure the average lifetime of a new type of light

bulb. The measurement of the lifetime of a single light bulb destroys the

light bulb. Consequently, the need for collecting a sample is very evident.

Example4 Suppose that i phones are packed 25 in a box. Before shipping,

there is a quality control process. Five phones are selected at random

without replacement and given a thorough final check. If a single phone

is found to be defective, the shipment is stopped. What are the merits of

this sampling plan?

Example5 Suppose a pharmaceutical company claims they have a drug to

cure the common cold. How can we test this conjecture? We may design

a double blind experiment involving 20 individuals who are experiencing a

cold. The individuals are chosen to be alike in many respects. Two groups

of 10 each are formed. The first group all receive the new drug while those

in the group will receive a placebo. Suppose that we observe 6 individuals

in the treatment and 4 in the control group are cured. Can we conclude

that the treatment is effective?

1.2 Discrete and continuous data

Discrete data is associated with the ability to enumerate or count the number

of items in a set. We encounter discrete data when we count how many heads

we observe in 100 tosses of a coin, or how often red occurs in spins of a roulette

wheel, or how many electronic components are found defective in a box. We
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also have discrete data when we count how many tosses of a coin are required

to observe the first occurrence of a head. It may take 1, 2,...etc tosses.

Continuous data are associated with an interval of values. We encounter

continuous data when we “measure” something. For example, when we measure

the height or weight of an individual we end up with continuous data. Volume,

length and time are also continuous.

1.3 Probability

Definition The set of all possible outcomes of a statistical experiment is called

the sample space and denoted by the symbol S. Elements in S will be

denoted by small letters s.

Example We can display data using a tree diagram. Consider 3 tosses of a

coin. We may write the set of possible outcomes in set notation,

S = {(HHH) , (HHT ) , (HTH) , (HTT ) , (THH) , (THT ) , (TTH) , (TTT )}

Example Suppose we have the experiment of choosing a point in the interval

(0, 1) . The sample space could be denoted by

S = {x : 0 < x < 1}
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Example Measuring the lifetime of an electrical component: S = {x : 0 < x <∞}

Example Counting the number of calls received by an operator: S = {x : x = 1, 2, ...}

Definition An event is a subset of a sample space. It is denoted by a capital

letter A,B,...Hence, the event

A = {(HHH) , (HHT ) , (HTH) , (HTT )}

is the event that H occurs in the first of three tosses of a coin.

We shall say that the event A above has occurred if any one of the possibilities

(HHH) , (HHT ) , (HTH) , (HTT )

has occurred. So if we observe (HTH) then we shall say that A has occurred.
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Definitions Recall some set theory

• The intersection of two events A,B denoted A∩B is the event containing

all elements common to both A and B.

• Two events A,B for which A∩B = φ, that is for which the intersection is

the empty set are said to be disjoint. They have no element in common.

• The union of two events A,B denoted A ∪ B is the event containing all

elements in both A and B.

• The complement of an event A with respect to the sample space S is the

subset of all elements of S that are not in A. It is denoted by A′

• De Morgan’s laws

(E1 ∪ ... ∪ En)
′

= E′1 ∩ ... ∩ E′n

(E1 ∩ ... ∩ En)
′

= E′1 ∪ ... ∪ E′n

We use Venn diagrams often to illustrate events. This serves to simplify notation

and serves to translate the English description of an event into set notation.
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Example Let A,B,C be three events.

at least one of A,B,C A ∪B ∪ C

none of A,B,C A′ ∩B′ ∩ C’=(A ∪B ∪ C)′

All three of A,B,C A ∩B ∩ C

exactly one of A,B,C (A ∩B′ ∩ C ′) ∪ (A′ ∩B ∩ C ′) ∪ (A′ ∩B′ ∩ C)

neither A nor B A′ ∩B′

exactly two of A,B,C
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1.4 Counting sample points

We will need to develop fast algorithms for counting the number of elements in

a set. What is the number of possible outcomes when tossing a coin 5 times?

How many possible hands of 5 cards each are there when chosen from a deck

of 52 cards? How many possible hands of 13 cards each are there when chosen

from a deck of 52 cards?

The multiplication principle states that if an experiment results in n1 possi-

ble outcomes and a second experiment results in n2 possible outcomes, then the

performance of the first experiment followed by the second will result in n1n2

possible outcomes.

Similarly for r experiments, the number of possible outcomes will be given

by the product n1n2...nr.
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Definition1 A permutation is an arrangement of all or part of a set of objects.

Theorem1 The number of permutations of n distinct objects is n!

Theorem2 The number of permutations of n objects, n1of which are alike of

one kind, n2of which are alike of another kind, ....,nrof which are alike of

another kind is

n!

n1!...nr!
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Example The number of permutations of the letters a, a, b, c, c, c, d is

7!

2!1!3!1!
=

7 (6) (5) (4) (3) (2) (1)

2 (1) (3) (2) (1) (1)
= 420

Theorem3 The number of permutations of n distinct objects taken r at a time

is

nPr =
n!

(n− r)!

Example The number of permutations of a, b, c taking 2 letters at a time is

3!

(3− 2)!
= 6

They are ab,ac, bc to which we add ba, ca, cb
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Theorem4 The number of combinations of n distinct objects taken r at a time

is

(nr ) =
n!

r! (n− r)!

Example The number of combinations of a, b, c taking 2 letters at a time is

3!

2! (3− 2)!
= 3

They are ab,ac, bc

Example The number of possible hands of 5 cards each in a set of 52 different

cards is

(
52
5

)
=

n!

r! (n− r)!

=
52 (51) (50) (49) (48)

5 (4) (3) (2) (1)

= 2, 598, 960
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1.5 Probability of an event

Probability is a function defined on the events in the sample space S in such a

way that it obeys the following 3 axioms

1. P (A) ≥ 0 for all sets A in S

2. P (S) = 1

3. If A1, A2, ..., is a sequence of mutually exclusive events, then

P (A1 ∪A2 ∪ ...) = P (A1) + P (A2) + ...
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Hence, if an experiment can result in N different equally likely outcomes

and if A contains n outcomes, then the probability of A is

P (A) =
n

N

We make use of the counting principles to calculate the numerator and de-

nominator.
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Example A pair of dice is rolled. What is the probability of getting either a 7

or 11?

P (”7” ∪ ”11”) = P (”7”) + P (”11”)

=
6

36
+

2

36
=

8

36

Example Toss a fair coin 3 times. What is the probability of getting at least

one head? The complementary event is getting no heads i.e. 3 tails.

(
1

8

)

Hence the probability of getting at least one head is 1− 1
8 = 7

8

Example Poker hands consist of 5 cards drawn at random from a deck of 52

cards. The probability of getting a hand of 5 cards is

(
52
5

)−1

What is the probability of getting four of a kind in the game of poker?

We can select one of the 13 possible types of cards (1,2,...,10,Jack, Queen,

King) in 13 ways and then take all four cards. The fifth card can be chosen in

48 ways. Hence the required probability is

13 (48)

(525 )
=

1

4165
= 2.4× 10−4
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Example What is the probability of a flush?

Here we want 5 cards of the same suit. We select the suit in
(
4
1

)
ways and then

choose 5cards from that suit in
(
13
5

)
ways. Hence the probability of a flush is

(
4
1

)(
13
5

)(
52
5

) =
5148

2598960
= 1.9808× 10−3
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1.6 Consequences of the axioms

From these axioms we can prove the following

• For any event A, P (A′) = 1− P (A)

• P (φ) = 0

• A1 ⊆ A2,=⇒ P (A1) ≤ P (A2)

• If A and B are two events, then

P (A ∪B) = P (A) + P (B)− P (A ∩B)

• For three events A,B,C

P (A ∪B ∪ C) = P (A) + P (B) + P (C)

− P (A ∩B)− P (A ∩ C)− P (B ∩ C) + P (A ∩B ∩ C)
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Examples We have the following probabilities for two events A1, A2: P (A1) =

0.12, P (A2) = 0.30, P (A1 ∩A2) = 0.07. Find P (A1 ∩A′2) , P (A′1 ∩A′2)

From A Venn diagram, we see that A1 = (A1 ∩A2) ∪ (A1 ∩A′2)

Hence P (A1) = P (A1 ∩A2)+P (A1 ∩A′2)=⇒P (A1 ∩A′2) = 0.12−0.07 = 0.05

By De Morgan’s laws,

P (A′1 ∩A′2) = 1− P (A1 ∪A2)

= 1− [P (A1) + P (A2)− P (A1 ∩A2)]

= 1− [0.12 + 0.30− 0.07]

= 0.65

Example A box contains 5 defective items and 20 non defectives. We sample 2

items at random without replacement. What is the probability that both

are defective?

We have (4) (5) = 20 ways of choosing the 2 defectives in sampling without

replacement. We have a total of (25) (24) = 600 ways of choosing 2 items

without replacement. Hence the required probability is 20
600 = 0.033. Similarly

the probability of having no defectives is

20 (19)

600
= 0.637

and the probability of having exactly one defective is 1− 0.033− 0.637 = 0.33.
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Example A man has 5 keys all similar in appearance. Only one opens his

house door. He tries one key at a time selecting a key at random each

time. What is the probability that the correct one is the third one chosen?

For the numerator, we count the number of ways of filling 5 boxes with a key. For

box #3, there is only one way to choose the correct one. For the others, it is the

product, 4 (3) (2) (1) . For the denominator it is the product (5) (4) (3) (2) (1.)

The ratio of the these products is 1
5 .
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1.7 Conditional probability

There are many instances when the probability of an event may need to take

into account the occurrence of another event. As an example, suppose that

a balanced die is tossed once. The probability of getting the digit “2” is 1/6.

Suppose however we are told that the result of the toss was an even number.

What then is the probability of getting the digit “2”?

If we know that the toss resulted in an even number, then the “new” sample

space has possible outcomes 2, 4, 6. Hence, given this information, the probabil-

ity of getting the digit “2” is 1/3.

Formally, we may obtain the conditional probability from the original prob-

ability function defined on the events of S.
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Definition The conditional probability of B given A is

P (B|A) = P (A ∩B)

P (A)
, P (A) > 0

Hence, P (A ∩B) = P (A)P (B|A),P (A) > 0
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Application Consider the 2 × 2 table used to study cancer rates among men

and women. A sample of 500 men and 500 women was taken.

Cancer No cancer Total

Male 60 440 500

Female 40 460 500

Total 100 900 1000

If A is the event that an individual chosen at random from the group of 1000 is

Male and B is the event that he has Cancer, then we see that

P (A) =
500

1000
= 0.50

P (B) =
100

1000
= 0.10

P (A ∩B) =
60

1000
= 0.06

P (B|A) =

(
60

1000

)(
500
1000

) =
60

500
= 0.12

P (A|B) = 0.60

P (A′|B′) = 0.40

P ((A|B′)) = 0.49
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The conditional probability obeys the axioms of probability as can be shown.

Hence, we have the following properties:

• For any events A,B P (A′|B) = 1− P (A|B)

• P (φ|B) = 0

• A1 ⊆ A2,=⇒ P (A1|B) ≤ P (A2|B)

• If A,B,C are three events, then

P (A ∪B|C) = P (A|C) + P (B|C)− P (A ∩B|C)
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Example Let A be the event that a sample of water from Lake Ontario contains

mercury, B the event that it contains iron and C the event that it contains

arsenic. Suppose we know that P (A) = 0.32, P (B) = 0.16, P (C|A) =

0.45, P (C|A′) = 0.02, P (A ∩B) = 0.28. Find P (B|A) , P (C ∩A) , P (C) .

From the definition of conditional probability, P (B|A) = P (A∩B)
P (A) = 0.28

0.32 =

0.875.

P (C ∩A) = P (C|A)P (A) = 0.45 (0.32),P (C ∩A′) = P (C|A′)P (A′) =

0.02 (0.68)= 0.015

P (C) = P (C ∩A) + P (C ∩A′) = 0.45 (0.32) + 0.02 (0.68) = 0.1576

Example Three horses, labeled A,B,C are in a race and their chances of win-

ning are 0.3, 0.5, 0.2 respectively. If horse C is scratched, what is B’s

chance of winning?

We would like to calculate

P (B|A ∪B) =
P (B)

P (A ∪B)

=
0.5

0.5 + 0.3
=

5

8
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1.7.1 Independence

Two events A,B are said to be independent if and only if

P (B|A) = P (A)

Equivalently

P (A|B) = P (A)

It follows that A,B are independent if and only if

P (A ∩B) = P (A)P (B)

Example In the cancer example, the events A,B are dependent since

0.06 = P (A ∩B) 6= 0.50 (0.10) = P (A)P (B)
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Example Consider an electrical system where two independent components are

connected in series vs two independent components connected in parallel.

For the series system, the probability that it works is given by

P (A1 ∩A2) = P (A1)P (A2)

whereas for the parallel system, the probability that it works is given by

P (A1 ∪A2) = P (A1) + P (A2)− P (A1)P (A2)

Suppose now that P (A1) = P (A2) = x,and 0 < x < 1 then

P (A1 ∪A2) = 2x− x2

whereas

P (A1 ∩A2) = x2

It follows that the parallel system is always more likely to function since

2x− x2 > x2.
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1.7.2 Product rule

Theorem Let A1, ..., Ak be k events in S. Then

P (A1 ∩ ... ∩Ak) = P (A1)P (A2|A1)P (A3|A1 ∩A2) ...P (Ak|A1 ∩A2 ∩ ... ∩Ak−1)

Definition Let A1, ..., Ak be k events in S. They are said to be mutually inde-

pendent provided

P (Ai ∩Aj) = P (Ai)P (Aj) , i 6= j

P (Ai ∩Aj ∩Ak) = P (Ai)P (Aj)P (Ak) , i 6= j 6= k

...

P (A1 ∩ ... ∩Ak) = P (A1)P (A2)P (A3) ...P (Ak)
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1.8 Bayes’ rule

Suppose that events B1, ..., Bk constitute a partition of the sample space S, that

is, i) they are mutually disjoint and ii) their union is S. In the next theorem we

see that we can express the probability of any event as a function of conditional

probabilities on the events of the partition. In practice, this facilitates the

calculation of the probability of the event.

Theorem For any other event A in S,

P (A) =
k∑

i=1

P (Bi ∩A) =
k∑

i=1

P (A|Bi)P (Bi)
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Application Suppose we have an urn containing 3 red balls and 2 green balls.

Consider the experiment whereby we pick a ball without replacement at

random from the urn and note its color. We then select a second ball from

the urn and note its color. What is the probability that the second ball

drawn is red?

The answer depends on the color of the ball first chosen. Let B be the event

that the first ball drawn is red. Then B and B′ constitute a partition. If A

represents the event that the second ball drawn is red, we have

P (A) = P (A|B)P (B) + P (A|B′)P (B′)

=

(
2

4

)(
3

5

)
+

(
3

4

)(
2

5

)
=

12

20

In Bayes’ theorem, we go from the “effect” to the “cause”.
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Bayes’Theorem Suppose that events B1, ..., Bk constitute a partition of the

sample space S such P (Bi) > 0, i = 1, ..., k. Then for any event A

P (Br|A) =
P (Br ∩A)∑k
i=1 P (Bi ∩A)

=
P (Br)P (A|Br)∑k
i=1 P (Bi)P (A|Bi)
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Application Consider the situation in a factory where there are 3 different

machines producing a certain type of bolt. The machines have different

levels of production and different probabilities of turning out defective

bolts. At the end of the day, all the bolts produced are pooled together

and a final inspection is made. Suppose that a bolt, selected at random, is

found to be defective. What are the probabilities that it came from each

of the 3 machines?

In this example, we see the “effect” which is to observe a defective bolt at the

end of the day. We now wish to go back to the cause and trace which machine

is most likely to have produced it.
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